Morphology, Function, and Differentiation of Bone Cells

نویسنده

  • Hiroaki Nakamura
چکیده

Bone plays a pivotal role in storing calcium and phosphate in vertebrates. This tissue is maintained by the balance of bone formation and bone resorption. Osteoblast-lineage cells, consisting of osteoblasts, osteocytes and bone lining cells, are engaged in bone formation. Bone resorption is mediated by osteoclasts. Recent research revealed that receptor activator of NF-κB (RANK)-RANK ligand (RANKL) mechanism is essential for the differentiating and activating osteoclasts. Osteoblast-lineage cells regulate bone resorption via the expression of RANKL and osteoprotegerin (OPG), a decoy receptor for RANKL. Additionally, osteoblastlineage cells participate in degradation of bone matrix by secreting MMP-13. Thus, bone remodeling is achieved by the harmonized orchestration of osteoblast-lineage cells and osteoclast-lineage cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds

Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...

متن کامل

Equine Bone Marrow Derived Mesenchymal Stem Cells: Isolation and Multilineage Differentiation

Objective- To evaluate growth characteristics and differentiation capacity of equine mesenchymal stem cell (eMSCs) derived from bone marrow (BM). Study design- In vitro experimental study. Animals- Four young adult horses (2-5 years old) Procedure- Cell morphology and growth characteristics of eMSCs harvested from BM were evaluated in standard culture conditions. eMSCs in passage 3 were subj...

متن کامل

Para-Nonylphenol Impairs Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells by Influencing the Osteoblasts Mineralization

Objective(s)Para-Nonylphenol (p-NP) is used in many industries and our previous study showed that p-NP causes a reduction in rats bone marrow mesenchymal stem cells (MSCs) viability. The aim of this study was to investigate the effect of p-NP on osteogenic differentiation of MSCs.Materials and MethodsMSCs were isolated and expanded to 3rd passage, then cultured in DMEM supplemented with osteoge...

متن کامل

Biological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow

Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...

متن کامل

Investigation of osteoblast-like cells cultured on nano-hydroxyapatite/chitosan based composite scaffold in the treatment of bone defects and limited mobility

Objective(s): Design and construction of biocompatible and biodegradable scaffolds are among the main goals of tissue engineering. Recently, use of nano-hydroxyapatite as a bioactive bioceramic agent with high similarity to the mineral phase of the human bone tissue, in combination with biodegradable polymers and implant coatings has attracted the attention of researchers in the field of biomat...

متن کامل

PLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering

Abstract Due to their mulitpotency, Mesenchymal stem cells (MSCs), have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs) to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid) (PLLA)/Nano hydroxyapatite (HA) composite nanofibrous scaffolds were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007